Apollonian Circle Packings : Geometry and Group Theory

نویسندگان

  • Ronald L. Graham
  • Jeffrey C. Lagarias
  • Colin L. Mallows
  • Allan R. Wilks
  • Catherine H. Yan
  • C. H. Yan
چکیده

Apollonian circle packings arise by repeatedly filling the interstices between four mutually tangent circles with further tangent circles. We observe that there exist Apollonian packings which have strong integrality properties, in which all circles in the packing have integer curvatures and rational centers such that (curvature)×(center) is an integer vector. This series of papers explain such properties. A Descartes configuration is a set of four mutually tangent circles with disjoint interiors. An Apollonian circle packing can be described in terms of the Descartes configuration it contains. We describe the space of all ordered, oriented Descartes configurations using a coordinate system MD consisting of those 4 × 4 real matrices W with WT QDW = QW where QD is the matrix of the Descartes quadratic form Q D = x2 1 + x2 2 + x2 3 + x2 4 − 12 (x1 + x2 + x3 + x4) and QW of the quadratic form QW = −8x1x2 +2x2 3 +2x2 4 . On the parameter ∗ Ronald L. Graham was partially supported by NSF Grant CCR-0310991. Catherine H. Yan was partially supported by NSF Grants DMS-0070574, DMS-0245526 and a Sloan Fellowship. She is also affiliated with Nankai University, China. 548 R. L. Graham, J. C. Lagarias, C. L. Mallows, A. R. Wilks, and C. H. Yan space MD the group Aut(Q D) acts on the left, and Aut(QW ) acts on the right, giving two different “geometric” actions. Both these groups are isomorphic to the Lorentz group O(3, 1). The right action of Aut(QW ) (essentially) corresponds to Möbius transformations acting on the underlying Euclidean space R2 while the left action of Aut(Q D) is defined only on the parameter space. We observe that the Descartes configurations in each Apollonian packing form an orbit of a single Descartes configuration under a certain finitely generated discrete subgroup of Aut(Q D), which we call the Apollonian group. This group consists of 4×4 integer matrices, and its integrality properties lead to the integrality properties observed in some Apollonian circle packings. We introduce two more related finitely generated groups in Aut(Q D), the dual Apollonian group produced from the Apollonian group by a “duality” conjugation, and the superApollonian group which is the group generated by the Apollonian and dual Apollonian groups together. These groups also consist of integer 4× 4 matrices. We show these groups are hyperbolic Coxeter groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Apollonian Circle Packings: Expander Graphs, Number Theory and Geometry

In the last decade tremendous effort has been put in the study of the Apollonian circle packings. Given the great variety of mathematics it exhibits, this topic has attracted experts from different fields: number theory, homogeneous dynamics, expander graphs, group theory, to name a few. The principle investigator (PI) contributed to this program in his PhD studies. The scenery along the way fo...

متن کامل

Apollonian Circle Packings: Geometry and Group Theory III. Higher Dimensions

This paper gives n-dimensional analogues of the Apollonian circle packings in parts I and II. Those papers considered circle packings described in terms of their Descartes configurations, which are sets of four mutually touching circles. They studied packings that had integrality properties in terms of the curvatures and centers of the circles. Here we consider collections of n-dimensional Desc...

متن کامل

Apollonian Circle Packings: Number Theory II. Spherical and Hyperbolic Packings

Apollonian circle packings arise by repeatedly filling the interstices between mutually tangent circles with further tangent circles. In Euclidean space it is possible for every circle in such a packing to have integer radius of curvature, and we call such a packing an integral Apollonian circle packing. There are infinitely many different integral packings; these were studied in the paper [8]....

متن کامل

Apollonian Circle Packings: Geometry and Group Theory II. Super-Apollonian Group and Integral Packings

A Descartes configuration is a set of four mutually tangent circles in the Riemann sphere, having disjoint interiors. Apollonian circle packings arise by repeatedly filling the interstices between four mutually tangent circles with further tangent circles. Such packings can be described in terms of the Descartes configurations they contain. Part I shoewed there is a natural group action on Desc...

متن کامل

Apollonian Circle Packings: Geometry and Group Theory I. The Apollonian Group

Apollonian circle packings arise by repeatedly filling the interstices between four mutually tangent circles with further tangent circles. We observe that there exist Apollonian packings which have strong integrality properties, in which all circles in the packing have integer curvatures and rational centers such that (curvature)×(center) is an integer vector. This series of papers explain such...

متن کامل

On the Local-global Principle for Integral Apollonian 3-circle Packings

In this paper we study the integral properties of Apollonian-3 circle packings, which are variants of the standard Apollonian circle packings. Specifically, we study the reduction theory, formulate a local-global conjecture, and prove a density one version of this conjecture. Along the way, we prove a uniform spectral gap for the congruence towers of the symmetry group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005